Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia.
نویسندگان
چکیده
The muscle and epithelial tissues of the gallbladder are regulated by a ganglionated plexus that lies within the wall of the organ. Although these ganglia are derived from the same set of precursor neural crest cells that colonize the gut, they exhibit structural, neurochemical and physiological characteristics that are distinct from the myenteric and submucous plexuses of the enteric nervous system. Structurally, the ganglionated plexus of the guinea pig gallbladder is comprised of small clusters of neurons that are located in the outer wall of the organ, between the serosa and underlying smooth muscle. The ganglia are encapsulated by a shell of fibroblasts and a basal lamina, and are devoid of collagen. Gallbladder neurons are rather simple in structure, consisting of a soma, a few short dendritic processes and one or two long axons. Results reported here indicate that all gallbladder neurons are probably cholinergic since they all express immunoreactivity for choline acetyltransferase. The majority of these neurons also express substance P, neuropeptide Y, and somatostatin, and a small remaining population of neurons express vasoactive intestinal peptide (VIP) immunoreactivity and NADPH-diaphorase enzymatic activity. We report here that NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity are expressed by the same neurons in the gallbladder. Physiological studies indicate that the ganglia of the gallbladder are the site of action of the following neurohumoral inputs: 1) all neurons receive nicotinic input from vagal preganglionic fibers; 2) norepinephrine released from sympathetic postganglionic fibers acts presynaptically on vagal terminals within gallbladder ganglia to decrease the release of acetylcholine from vagal terminals; 3) substance P and calcitonin gene-related peptide, which are co-expressed in sensory fibers, cause prolonged depolarizations of gallbladder neurons that resemble slow EPSPs; and 4) cholecystokinin (CCK) acts presynaptically within gallbladder ganglia to increase the release of acetylcholine from vagal terminals. Results reported here indicate that hormonal CCK can readily access gallbladder ganglia, since there is no evidence for a blood-ganglionic barrier in the gallbladder. Taken together, these results indicate that gallbladder ganglia are not simple relay stations, but rather sites of complex modulatory interactions that ultimately influence the functions of muscle and epithelial cells in the organ.
منابع مشابه
C-Kit expression in the gallbladder of guinea pig with chronic calculous cholecystitis and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal
Objective(s): To study the c-Kit expression in the gallbladder of cholesterol lithogenic guinea pig model and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal (ICCs). Materials and Methods:A total of 45 guinea pigs were randomly assigned into three groups: the control group (guinea pigs fed a standard diet, normal group); the model group (guinea pigs fed a cholesterol gal...
متن کاملMelatonin treatment reverts age-related changes in Guinea pig gallbladder neuromuscular transmission and contractility.
The incidence of gallbladder illness increases with age, but the altered mechanisms leading to gallbladder dysfunction are poorly understood. Here we determine the age-related alterations in gallbladder contractility and the impact of melatonin treatment. Isometric tension changes in response to electrical field stimulation and to agonists were recorded from guinea pig gallbladder muscle strips...
متن کاملC-Kit expression in the gallbladder of guinea pig with chronic calculous cholecystitis and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal
OBJECTIVES To study the c-Kit expression in the gallbladder of cholesterol lithogenic guinea pig model and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal (ICCs). MATERIALS AND METHODS A total of 45 guinea pigs were randomly assigned into three groups: the control group (guinea pigs fed a standard diet, normal group); the model group (guinea pigs fed a cholesterol gall...
متن کاملGallbladder motility and the sex of the guinea pig
Progesterone (P), 17β-estradiol (E2), and dihydrotestosterone (DHT) affect gallbladder motility. When gallbladders were taken from women and men, women had more estrogen and P receptors than men. Both P and E2 had an inhibitory effect upon gallbladder contractility in men and premenopausal and postmenopausal women. Similar findings have been reported in gallbladder strips from male and female g...
متن کاملP2X2 and P2X3 receptor expression in the gallbladder of the guinea pig.
We investigated for the first time, the distribution pattern of P2X2 and P2X3 receptors in the gallbladder of the guinea pig using immunohistochemistry. P2X2 and P2X3 receptor-immunoreactive nerve fibers were observed within the ganglia, in the interganglionic connectives, in the muscularis and in the paravascular plexus. Immunoreactivity for P2X2 and P2X3 was also observed in most neurons in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microscopy research and technique
دوره 39 1 شماره
صفحات -
تاریخ انتشار 1997